DYNAMOMETER DATA SHEET (Version 1.0) # Models: DI3M-3.75T-FM DI3M-3.75T-BM Max continuous power dissipation: 3.3 HP (2.46 kW) Max 30 second power dissipation: 4.52 HP (3.37 kW) Max continuous brake torque: 540 in-oz. (381 N-cm) Max brake speed: 12,000 RPM A DIVISION OF TECHNICAL FILM SYSTEMS, INC. # **TABLE OF CONTENTS** | 1. OV | ERVIEW | 4 | |--------|---|----| | 2. SPI | EED vs. TORQUE CURVE – FOR ONE MB-3.75 BRAKE | 6 | | 3. TO | RQUE & SPEED OUTPUT TO MOTOR | 7 | | Table | e 1: Torque, Speed and Power (English Units) | 7 | | Table | e 2: Torque, Speed and Power (SI Units) | 7 | | 4. LO | AD CELL (DI3M-2.4T-FM, Measure Motor Torque) | 7 | | 4.1 | Load Cell Accuracy Plot (in-oz.) | 8 | | 4.2 | Load Cell Accuracy Plot (N-cm) | 9 | | 5. SPI | EED MEASUREMENT | 10 | | 6. DA | TA SAMPLING | 10 | | 7. LAF | PTOP COMPUTER | 10 | | 8. PO | WER REQUIREMENTS | 10 | | 9. DC | VOLTAGE TRANSDUCERS | 11 | | 9.1 | Input | 11 | | 9.2 | Output | 11 | | 9.3 | Environmental and Physical Characteristics | 11 | | 10. AC | VOLTAGE TRANSDUCERS – SINGLE PHASE | 11 | | 10.1 | Input | 11 | | 10.2 | Output | 11 | | 10.3 | Environmental and Physical Characteristics | 11 | | 11. DC | CURRENT TRANSDUCERS (Split Core) | 12 | | 11.1 | Input | 12 | | 11.2 | Output | 12 | | 11.3 | Environmental and Physical Characteristics | 12 | | 12. AC | CURRENT TRANSDUCERS - SINGLE PHASE (Split Core) | 12 | | 12.1 | Input | 12 | | 12.2 | Output | 12 | | 12.3 | Environmental and Physical Characteristics | 12 | A DIVISION OF TECHNICAL FILM SYSTEMS, INC. | 13. | DYNAMOMETER LAYOUT – DB3M-3.7T-FM, LOAD CELL ON MOTOR | 13 | |-----|---|----| | 14. | MOTOR MOUNTING PLATE – DI3M | 14 | | 15. | DYNAMOMETER CONTROLLER | 15 | | 16. | NOMENCLATURE OF DYNAMOMETER PART NUMBER | 16 | A DIVISION OF TECHNICAL FILM SYSTEMS, INC. #### 1. OVERVIEW This data sheet is a reference for the performance specifications of the dynamometer models listed on the cover page. The MBS dynamometers may be used to test just about any type of motor (i.e. electric, hydraulic, pneumatic, reciprocating). Types of testing include: endurance testing, speed versus torque curves, measure stall torque, efficiency, temperature rise, performance verification, etc. MBS dynamometers are sold as complete systems (shown in image below) that include: the dynamometer, controller, computer with software, calibration weight, manual and all cables. Our systems do not require annual fees, licenses or permits. The software is user friendly, is very configurable (i.e. changing units, display scale limits, data acquisition rate, etc.) and has some safety precautions build in to prevent damage to the motor under test and/or the system (i.e. brake temperature sensor, setting current limit, setting power limit, trigger input signals). Dynamometers, or more specifically the size of the brakes for the dynamometers, are selected based on the required power dissipation and required torque. The nomenclature of the dynamometer part number is described at the end of this document. The power dissipation rating for this system is located on the bottom of the cover page. This data sheet may also be used to determine the best configuration for a system. The DI3M-3.75T-FM is a direct drive system where one of the brakes may be un-coupled to test smaller motors; the load cell measures the motor torque. handle. Dynamometers, or more specifically the brakes for the dynamometers, are sized based on the required power dissipation and required torque. The benefit of this dynamometer as an inline system is the ability to test much higher speeds than an off the shelf transmission can The torque, speed, voltage and current ranges (and types; i.e. DC, AC) need to be specified when purchasing a dynamometer in order to select the limits for the instrumentation. The following performance specifications for load cells, transducers, etc. are based on vendor specifications. A DIVISION OF TECHNICAL FILM SYSTEMS, INC. #### 2. SPEED vs. TORQUE CURVE - FOR ONE MB-3.75 BRAKE A DIVISION OF TECHNICAL FILM SYSTEMS, INC. #### 3. TORQUE & SPEED OUTPUT TO MOTOR | Motor_Spd | Motor | Power | Pulley Ratio | Qty. | Brake | Brake_Spd | Time | |-----------|----------|-------|---------------|--------|---------------|-----------|-------| | | Torque | | | Brakes | Torque | | | | (RPM) | (in-oz.) | (HP) | (motor/brake) | | (in-oz./qty.) | (RPM) | (sec) | | 0 | 180 | 0 | Direct drive | 1 | 180 | 0 | cont. | | 0 | 360 | 0 | Direct drive | 2 | 360 | 0 | cont. | | 4,500 | 270 | 1.2 | Direct drive | 1 | 270 | 4,500 | cont. | | 4,500 | 540 | 2.4 | Direct drive | 2 | 540 | 4,500 | cont. | | 6,000 | 420 | 2.5 | Direct drive | 2 | 420 | 6,000 | cont. | | 6,000 | 600 | 3.5 | Direct drive | 2 | 600 | 6,000 | 30 | | 12,000 | 140 | 1.6 | Direct drive | 1 | 140 | 12,000 | cont. | | 12,000 | 280 | 3.2 | Direct drive | 2 | 280 | 12,000 | cont. | Table 1: Torque, Speed and Power (English Units) | Motor_Spd | Motor | Power | Pulley Ratio | Qty. | Brake | Brake_Spd | Time | |-----------|--------|---------|---------------|--------|-------------|-----------|-------| | | Torque | | | Brakes | Torque | | | | (RPM) | (N-cm) | (Watts) | (motor/brake) | | (N-cm/qty.) | (RPM) | (sec) | | 0 | 130 | 0 | Direct drive | 1 | 130 | 0 | cont. | | 0 | 260 | 0 | Direct drive | 2 | 260 | 0 | cont. | | 4,500 | 191 | 895 | Direct drive | 1 | 191 | 4,500 | cont. | | 4,500 | 382 | 1,790 | Direct drive | 2 | 382 | 4,500 | cont. | | 6,000 | 297 | 1,865 | Direct drive | 1 | 297 | 5,500 | cont. | | 6,000 | 424 | 2,611 | Direct drive | 2 | 424 | 5,500 | 30 | | 12,000 | 99 | 1,193 | Direct drive | 1 | 99 | 12,000 | cont. | | 12,000 | 198 | 2,387 | Direct drive | 2 | 198 | 12,000 | cont. | Table 2: Torque, Speed and Power (SI Units) The tables are based on the performance graph for the MBZ-3.75 Brake, shown in Figure 1. The 3.75 model brake has been known to operate up to 15,000 RPM but no data is available above 12,000 RPM. #### 4. LOAD CELL (DI3M-2.4T-FM, Measure Motor Torque) | Max Rated Load on Load Cell | 211 oz. (6-Kg.) | |-------------------------------|----------------------------| | Load Cell Arm | 3.0 inches (7.62 cm) | | Max Rated Torque to L.C | 635 in-oz. (448 N-cm) | | Max Brake Torque | 600 in-oz. (424 N-cm) | | Non-Linearity | 0.02% of Rated Load (R.L.) | | Hysteresis | 0.02% of R.L. | | Non-Repeatability | 0.02% of R.L. | | Zero Balance | ±1% of R.L. | | Compensated Temperature Range | 14°F to 104°F | | Safe Temperature Range | 14°F to 140°F | | Temperature Effect on Output | 0.002% of Load/°F | | Temperature Effect on Zero | 0.002% of Load/°F | | Safe Overload | 150% of R.L.* | ^{*} Hard stops are in place to help prevent damage from over-load. A DIVISION OF TECHNICAL FILM SYSTEMS, INC. ## 4.1 Load Cell Accuracy Plot (in-oz.) The Torque Error plot shows the percentage error as a function of measured torque. These plots show the range that a load cell will accurately measure. The maximum torque to the motor is based on the maximum torque from the brake. The error plot is based on published data from the load cell vendor. A DIVISION OF TECHNICAL FILM SYSTEMS, INC. ## 4.2 Load Cell Accuracy Plot (N-cm) The Torque Error plot shows the percentage error as a function of measured torque. These plots show the range that a load cell will accurately measure. The maximum torque to the motor is based on maximum torque from the brake. The error plot is based on published data from the load cell vendor. A DIVISION OF TECHNICAL FILM SYSTEMS. INC. #### 5. SPEED MEASUREMENT A standard brake has five magnets (alternative quantity are optional) which trigger a hall effect sensor. The speed is averaged over one revolution of the brake. A 48-MHZ clock is used to measure the time between magnets. | <u>Parameter</u> | Conditions | Min. | Typ. | Max. | <u>Units</u> | |------------------|---------------|------|------|------|--------------| | Clock Error | ~25°C | | ±30 | | PPM | | | -10°C to 60°C | | ±50 | | PPM | | | -40°C to 85°C | | ±100 | | PPM | | Brake Speed | 5 magnets | 12 | | 180* | KPM | | | 30 magnets | 2 | | 30* | KPM | ^{*} Theoretical speed; actual maximum speed is limited to the speed of the brake. ## 6. DATA SAMPLING Sampling is the frequency of measuring and recording data; this rate is adjustable by the operator. | <u>Parameter</u> | Conditions | Min. | Typ. | Max. | <u>Units</u> | |------------------|---------------|------|------|------|--------------| | Sampling Rate | 2.3 GHz Proc. | 20 | 50 | - | ms | i.e. 50 ms = 20 samples (or readings) per second. #### 7. LAPTOP COMPUTER | <u>Parameter</u> | Conditions | Min. | Typ. | Max. | <u>Units</u> | |------------------|------------|------|------|------|--------------| | Processor | | 2.3 | • | | GHz | | Memory | | 8 | | | GB | | Display | LED LCD | | 15.6 | | inches | #### 8. POWER REQUIREMENTS The MBS Dynamometer requires two 115 or 230 VAC power outlets: one for the laptop computer and one for the controller. The brakes in the dynamometer structure receive power from the controller. | Item | Voltage | Type | Current | Freq. | # Plugs | |-------------|---------|------|---------|-------|---------| | | | | (amps) | (Hz) | | | Controller | 115/230 | VAC | 1.1/0.6 | 50/60 | 1 | | Laptop | 110-240 | VAC | 1.2 | 50/60 | 1 | | Dynamometer | 24 | VDC | 6.0 | - | none | A DIVISION OF TECHNICAL FILM SYSTEMS, INC. #### 9. DC VOLTAGE TRANSDUCERS 9.1 Input Range 0 VDC to: 1, 5, 10, 50, 150, 200 up to 600 VDC Overload 2x voltage range selected Frequency Range DC only 9.2 Output Basic Accuracy 1.0% Thermal Drift 500 PPM/°C Response Time 250 ms 9.3 Environmental and Physical Characteristics Operating Temperature 0°C to +50°C Insulation Category CAT II Vibration Tested to IEC 60068-2-6, 1995 Pollution Degree 2 Altitude 2000-meter max. Insulation Voltage 2500 VDC Weight 0.5 lbs. #### 10. AC VOLTAGE TRANSDUCERS - SINGLE PHASE **10.1** Input Range 0 VAC to: 50, 150, 250, 500, 600 VAC Overload 2x voltage range selected Frequency Range 20 Hz to 5 kHz 10.2 Output Basic Accuracy 0.5% Thermal Drift 500 PPM/°C 10.3 Environmental and Physical Characteristics Insulation Category CAT II Vibration Tested to IEC 60068-2-6, 1995 Pollution Degree 2 Altitude 2000-meter max. Insulation Voltage 2500 VDC MTBF Greater than 100K hours Relative Humidity 5% to 95%, non-condensing Weight 0.5 lbs. A DIVISION OF TECHNICAL FILM SYSTEMS, INC. #### 11. DC CURRENT TRANSDUCERS (Split Core) **11.1** Input Range 0 ADC to: 2, 5, 10, 20, 30, 50, 75, 100 up to 600 ADC Overload 4x current range selected Frequency Range DC only 11.2 Output Basic Accuracy 1.0% Linearity 10% to 100% F.S. Thermal Drift 500 PPM/°C Response Time 250 ms 11.3 Environmental and Physical Characteristics Operating Temperature 0°C to +50°C Insulation Category CAT II Vibration Tested to IEC 60068-2-6, 1995 Pollution Degree 2 MTBF Greater than 100K hours Relative Humidity 5% to 95%, non-condensing Weight 0.5 lbs. #### 12. AC CURRENT TRANSDUCERS - SINGLE PHASE (Split Core) **12.1** Input Range 0 AAC to: 5, 10, 15, 20, 25, 30, 40, 50 up to 600 AAC Overload 4x current range selected Frequency Range 20 Hz to 5 kHz 12.2 Output Basic Accuracy 0.5% Thermal Drift 500 PPM/°C Response Time 250 ms 12.3 Environmental and Physical Characteristics Operating Temperature 0°C to +60°C Insulation Category CAT II Vibration Tested to IEC 60068-2-6, 1995 Pollution Degree 2 Altitude 2000-meter max. Weight 0.5 lbs. A DIVISION OF TECHNICAL FILM SYSTEMS, INC. ## 13. DYNAMOMETER LAYOUT - DB3M-3.7T-FM, LOAD CELL ON MOTOR A DIVISION OF TECHNICAL FILM SYSTEMS, INC. ### 14. MOTOR MOUNTING PLATE - DI3M A DIVISION OF TECHNICAL FILM SYSTEMS, INC. ### 15. DYNAMOMETER CONTROLLER #### 16. NOMENCLATURE OF DYNAMOMETER PART NUMBER The load cell(s) size(s) and type(s) of voltage & Current transducers are to be specified individually.